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Abstract: In this work a dynamic state-space model was 

constructed using a Hankel matrix formulation. A novel update 

algorithm for computation of the state transition matrix and its 

eigenvalues was developed. The method suits for analysis and 

synthesis of the rapidly changing dynamic systems and signals 

corrupted with additive random noise. The knowledge of the time 

varying state transition matrix and its eigenvalues enables accurate 

and precise numerical operators such as differentiation and 

integration in the presence of noise. 
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1. Introduction 

Estimation of the state of the dynamic systems and signals 

has been an object of vital research for many years impacted 

by the discovery of the Kalman filter (KF), extended Kalman 

filter (EKF), neural network algorithms and the LMS and 

RLS algorithms [1-7].  The adaptive algorithms have found 

to be suitable methods for many kind of linear and nonlinear 

system modelling. The update of the model parameters is 

based on the use of the forgetting functions.  State-space 

models, which are based on matrix formulations have gained 

acceptance in various control system analysis and synthesis. 

A state-space approach differs significantly from the adaptive 

methods such as KF, EKF and RLS algorithms in that the 

system matrices are solved directly form the measured data 

matrices using least squares (LS) or total least squares (TLS) 

methods. The noise inherent in data matrices is usually 

cancelled by the singular value decomposition (SVD) based 

subspace methods [8-9]. A disadvantage in the SVD based 

solutions is the treatment of the data matrix blocks, which 

give the system matrices in a defined time interval. The 

matrices are then supposed to be time-invariant within the 

time interval. However, in rapidly changing dynamic systems 

the matrices may change abruptly and the SVD based 

methods give only a time averaged estimates. 

       In this work we present a dynamic state-space model, 

where the state transition matrix is updated at every time 

increment. The dynamic system modelling is based on the 

Hankel data matrix representation. We present a novel update 

algorithm for computation of the state-transition matrix and 

its eigenvalues. The method can be adapted for system state-

space modelling and filtering the measurement signals in the 

presence of noise.  

 

 

2. Theoretical considerations 

2.1 The dynamic state-space model 

The dynamic state-space model under consideration is 

defined as 

                             
1n n n

n n n

X F X

y C X w

 

 
                              (1) 

where the state vector 1Nx

nX R , the state transition 

matrix NxN

nF R and the vector [1 0 0]C    1xNR .The 

scalar 1 1x

nw R  is a random zero mean observation noise. 

The signal 1 1x

ny R  consists of measurements at time 

intervals ( 0,1,2,...)t nT n  , where T  is the sampling 

period. Let us define the data vector 

 1 2 1

T

n n n n n NY y y y y     where T denotes matrix 

transpose. The Hankel structured data matrix NxM

nH R  is 

defined as 
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              (2) 

where the subscript n in 
nH  refers to the most recent data 

point ny . The antidiagonal elements of the 
nH  data matrix 

are equal. The state-space model (1) can be represented in 

the following form 

                     1 1n n n nH F H W                                   (3) 

where 1nW  is the Hankel structured noise matrix. The least 

squares estimate of the state transition matrix nF comes from 

     
1 # 1

1 1( )T T

n n n n n n n n nF H H H H H H R C 

         (4) 

where the pseudoinverse matrix # 1( )T T MxN

n n n nH H H H R  . 

The matrices 1

T NxN

n n nR H H R  and T NxN

n n nC H H R  . 

The nC  matrix is symmetrical, i.e. T

n nC C . It has a stable 

inverse since it is positive definite and all eigenvalues are 

nonnegative. The rank of the state transition matrix 

nF defines the system order. In many applications the state 

transition matrix should be evaluated at T intervals. In 
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complex dynamic systems the dimension of the state 

transition matrix is high and the computation of the 

pseudoinverse matrix #

nH  would be an overwhelming task. In 

this work we show that with a special partitioning the 
nR and 

nC  matrices into submatrices the computational load is 

drastically diminished. 

 

 2.2  Computation of the state transition matrix 
nF  

The data matrix 
nH is partitioned as  

                  
n

n

n

D
H

d

 
  
 

                                        (5) 

where the matrix ( 1)N xM

nD R   and  the vector 1xM

nd R . 

The data matrix 
1nH 
is partitioned as 

                   
1

1

n

n

n

d
H

D





 
  
 

                                     (6) 

where the vector 1

1

xM

nd R  and the matrix 
nD is identical to 

that in (5).  Now we have 
T T

n T T n n n n

n n n T T
n n n n n

n n

T

n n

D D D D d
C D d

d d D d d

A b

b c

  
       

   

 
  
 

          (7) 

where  the matrix ( 1) ( 1)N x N

nA R   , the vector 

( 1) 1N x

nb R  and the scalar 1 1x

nc R . The analytic solution of 

the inverse matrix is 
1 1

1

T
n n n n n n n n

n T T
n n n n n

A b A s m m s m
C

b c s m s

 


   

    
   

      (8) 

where the vector 1 ( 1) 1N x

n n nm A b R   and the scalar 

1 1 1( )T x

n n n ns c b m R   . The inverse matrix has the same 

block dimensions as the 
nC  matrix. Correspondingly, we 

have 

     

1

1
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n
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n nn n n n
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n nn n n n

d
R H H D d

D
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               (9) 

where the vector 1 ( 1)x N

ne R  and the scalar 1 1x

ng R . The 

matrix nA and the vector nb are identical to in (7). Now we 

obtain the state transition matrix as 
1

1

n n n

T
n n n n n n n n

T
n n n n n

F R C

e g A s m m s m

A b s m s







   
   

   

 

which finally yields 

 

 

   
n n

n

h k
F

I

 
  

 
                                (10) 

where the scalar 
n n n n n nk g s s e m  and the vector 

1 T

n n n n nh e A k m  . The identity matrix ( 1) ( 1)N x NI R   and the 

zero vector ( 1) 1N xR  .  

 

2.3 Updating the state transition matrix 
nF        

The updated matrix  1nC   is partitioned into the four sub-

blocks 

1 1 1 1

1 1

1

1

T T
n T T n n n n

n n n T T
n n n n n

n n

T

n n

d d d d D
C d D

D D d D D

p e

e A

   

 





  
       

   

 
  
 

 (11) 

where 1np  is a scalar. The essential observation is that 
1nC 
 

contains a submatrix
nA , which is the same as   in partitioning 

the 
nC  matrix (7).  The vector 

ne  equals to that in (9). The 

analytic matrix inversion gives 

             

1
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1

1 1

1

1 1

n n

n T

n n

n n n

T T

n n n n n n

p e
C

e A

r r q

r q A r q q







 



 

 
  
 

 
  

  

                (12) 

where the vector 1

n n nq e A and the scalar 

1

1 1( )T

n n n nr p q e 

   .  We may note that the vector 
nq is 

previously computed as a first term in vector 
nh in (10). 

Finally, the computed  1

1nC


 matrix is represented in the 

repartitioned form (7) 

         

1

1 11

1
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1

1 1 1 1 1 1
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 
  
 

     (13) 

  where the vector 1

1 1 1n n nm A b

   and the scalar 

1

1 1 1( )T

n n n ns c b m 

    . The matrix ( 1) ( 1)

1

N x N

nT R  

  , the 

vector ( 1) 1

1

N x

nz R 

  and the scalar 1 1

1

x

nw R  are picked up 

from the computed inverse matrix 1

1nC

  (12). By comparing 

the block matrices we obtain the solution for the vector 

1nm  and the inverse block matrix 1

1nA

  as 

                       

1

1 1 1

1

1 1 1 1

n n n

T

n n n n

m w z

A T m z



  



   

 

 
                   (14) 

Now we get the updated 
1nR 
matrix 

  
1 1

1

1 1

n n

n

n n

e g
R

A b

 



 

 
  
 

                                (15) 
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where the vector 1 ( 1)

1

x N

ne R 

  and the scalar 1 1

1

x

ng R  . 

Finally, the uptake of the state transition matrix 
1nF 

comes 

from 

    

1

1 1 1

1
1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

n n n

T
n n n n n n n n

T
n n n n n

n n

F R C

e g A s m m s m

A b s m s

h k

I



  


       

    

 

 

   
  

   

 
  

 

 (16) 

where the scalar 
1 1 1 1 1 1n n n n n nk g s s e m       and the vector 

1

1 1 1 1 1

T

n n n n nh e A k m

      . An interesting feature is that the 

vector 
1nb 
 needs not to be known in the uptake process (16).  

 

2.4  Fast uptake of the 
nR matrix 

The uptake process (16) needs the computation of the vector 

1 2 1

T

n n ne d D   and the scalar 
1 2 1

T

n n ng d d   , if partitioning 

(5) is used.  This would require one vector-matrix and one 

vector-vector multiplication. Fast uptake of the 
nR matrix is 

obtained if we adapt the partitioning (2) for the data matrix 

  1 1n n n n MH Y Y Y                    (17) 

Now we have 

 1 1 1[ ]T T T

n n n n n n M n MR Y Y Y Y Y Y            (18) 

and the uptake of the 
nR matrix is yielded as 

    1 2 1 1

T T

n n n n n M n MR R Y Y Y Y                       (19) 

The uptake of the 
nR matrix needs only two vector-vector 

multiplications and the vector 
1ne 
and the scalar 

1ng 
are 

simply picked up from the 
1nR 
matrix (19). 

 

2.5  Computational complexity   

The uptake of the state transition matrix requires the 

computation of the matrix inverse 1

1nC

 (12), which needs one 

vector-vector multiplication. The uptake of the vector 

1nm  and the inverse block matrix 1

1nA

 (14) needs one 

vector-vector multiplication. Finally, the uptake of the scalar 

1nk 
and  the vector 

1nh 
in (16) requires one vector-matrix 

and three vector-vector multiplications. Thus the 

computational complexity of the algorithm is 
2( ) 5 ( )O n O n . 

 

3. Applications of the method  

3.1 Computation of the eigenvalues of the state transition 

matrix 

The Hankel data matrix representation (3,5) of the dynamic 

state-space model leads to a companion matrix structure of 

the state transition matrix nF  (10) , which involves only the 

vector nh and the scalar nk . An important advantage of the 

companion matrix structure is that the eigenvalues 

1 2, ,..., N   of the state transition matrix can be directly 

computed as the roots of the polynomial having coefficients 

[1  -
nh  -

nk ]. The eigenvalues of the state transition matrix 

give important knowledge of the order and the stability of the 

system and its dynamic behaviour. The eigenvalues also aid 

in selection of the model order. The occurrence of very small 

eigenvalues indicates that the system order is smaller that the 

model order, which leads to overmodelling. When the model 

order equals the system order, the scalar coefficient
nk  attains 

a value 1nk   .  

 

3.2  Signal prediction and state-space filtering 

The knowledge of the state transition matrix 
nF enables the 

prediction of the measurement signal 
ny as 

1 1
ˆ

n n n n n nH F H y C F H                       (20) 

where 1[1 0 0] xNC R  . Using the Hankel data matrix 

representation we may define the prediction data matrix as 

                                          

1 1

1 2 2

1 2 2

1

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

ˆ ˆ

n n n M

n n n M

n

n N n N n N M

n n n

y y y

y y y
H

y y y

H F H

  

   

      



 
 
 
 
 
 

 

           (21) 

The state-space filtered signal ˆ
ny can be obtained as a mean 

of the antidiagonal elements. In the following we describe 

several matrix operators based on the state transition matrix. 

In all computations the filtered data matrix (21) is applied. 

 

3.3 Numerical signal processing 

    The knowledge of the state transition matrix
nF  enables the 

numerical signal processing of the state-space filtered signal. 

In the following we develop matrix operators based on the 

state transition matrix for numerical interpolation, 

differentiation and integration of the measurement signal.  

   The state transition matrix can be presented in the 

eigenvalue decomposited form 1

n n n nF U D U  , where 

1 2( )NxN

n ND R diag      and NxN

nU R . Based on (21) 

we have a result 

  

1

1

1

ˆ ˆ ˆ

ˆ ˆ ˆ

n n n n n n n

n n n n n n n

H F H U D U H

H U D U H F H





  

 

  

 
                 (22) 

  where the time-shift [0, ]T . Now we may define the 

interpolating time-shift operator ,

NxN

nS R  as 

   , ,
ˆ ˆ

n n n n nH S H S F 

                            (23) 

Next, we may define the differentiation operator NxN

nD R  

as 

 1
ˆ ˆ ˆ ˆnD

n n n n n

d
H D H H e H

dt
                    (24) 

Due to (20) we have 

      log ( )nD

n n nF e D m F                      (25) 

where log ( )m   denotes matrix logarithm. 

Further, by defining the integral operator NxN

nI R as 

                   ˆ ˆ
n n nH dt I H                              (26) 
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Since the differentiation and integral operator are inverse 

operators  

   
 

 

11

1

ˆ ˆ ˆlog ( )

log ( )

n n n n n n

n n

I H D H m F H

I m F





  


       (27) 

and the definite integral is yielded as 

                                         

    
( )

1 1

ˆ

ˆlog ( ) log ( )

nT

n

n d T

n n d n

H dt

m F m F H



 

 


          (28) 

The interpolating, differentiation and integral operators are 

commutative, i.e. 
n n n nS D D S  and 

n n n nS I I S . The 

computation of the second, third etc. derivatives and integrals 

of the signals are also possible using the matrix operators, 

e.g. the second derivative operator is obtained 

as  
22 log ( )n nD m F . It should be pointed out that applied to 

the state-space filtered signals the numerical operators are 

analytic, i.e. they produce results with machine precision.  

     

4. Discussion                                        

The distinct difference between the present algorithm and the 

SVD based methods is that the present algorithm updates the 

state transition matrix 
nF at every time interval, while the 

SVD based algorithms [8-9] compute the state transition 

matrix in  data blocks.  Our algorithm is more feasible in the 

analysis of the fastly changing dynamic systems and 

especially for real-time applications, where the eigenvalues 

of the state transition matrix give actual information on the 

system functioning.  

    A key idea in this work is the repartitioning scheme (13), 

which yields the uptake of the vector 
1nm 
and the inverse 

block matrix 1

1nA


 (14) and then the uptake of the state 

transition matrix 
1nF 
(16). The companion matrix structure 

of the matrix
nF enables the computation of the eigenvalues 

of the state transition matrix via the roots of the polynomial 

[1  -
nh  -

nk ]. This procedure is much faster than the direct 

eigenvalue decomposition of the 
nF matrix. The knowledge 

of the eigenvalues yields a plenty of numerical signal 

processing tools, such as interpolation, differentiation and 

integration operators (21,22,26), which compete with the 

conventional B-spline signal processing algorithms [10-12]. 

 

 

References 

[1] F. Daum, Nonlinear filters: Beyond the Kalman Filter, 

IEEE A&E Systems Magazine, vol. 20, pp. 57-69, Aug. 

2005. 

[2] A. Moghaddamjoo and R. Lynn Kirlin, “Robust adaptive 

Kalman filtering with unknown inputs,” IEEE Trans. 

Acoustics, Speech and Signal Process. vol. 37, No. 8, 

pp. 1166-1175, Aug. 1989. 

[3] J. L. Maryak, J.C. Spall and B.D. Heydon, “Use of the 

Kalman filter for interference in state-space models with 

unknown noise distributions,” IEEE Trans. Autom. 

Control, vol, 49, No. 1, pp. 87-90, Sep. 2005. 

[4] R. Diversi, R. Guidorzi and U. Soverini, “Kalman 

filtering in extended noise environments,” IEEE Trans. 

Autom. Control, vol. 50, No. 9, pp. 1396-1402, Sep. 

2005 

[5] D.-J. Jwo and S.-H. Wang, Adaptive fuzzy strong 

tracking extended Kalman Filtering for GPS navigation, 

IEEE Sensors Journal, vol. 7, no. 5, pp. 778-789, May 

2007. 

[6] S. Attallah, The wavelet transform-domain LMS 

adaptive filter with partial subband-coefficient updating, 

IEEE Trans. Circuits and Systems II, vol. 53, no. 1, pp. 

8-12, Jan. 2006 

[7] H. Olkkonen, P. Pesola, A. Valjakka and L. Tuomisto, 

“Gain optimized cosine transform domain LMS 

algorithm for adaptive filtering of EEG,” Comput. Biol. 

Med, vol, 29, pp. 129-136, 1999. 

[8] S. Park, T.K. Sarkar and Y. Hua, A singular value 

decomposition-based method for solving a deterministic 

adaptive problem, Digital Signal processing 9, 57-63, 

1999. 

[9] T.J. Willink, “Efficient adaptive SVD algorithm for 

MIMO applications,” IEEE Trans. Signal Process., vol. 

56,  no. 2, pp.615-622, Feb. 2008. 

[10] M. Unser, A. Aldroubi and M. Eden, “B-spline signal 

processing. I. Theory,” IEEE Trans. Signal Process., 

vol. 41,  no. 2,  pp. 821-833, Feb. 1993. 

[11] M. Unser, A. Aldroubi and M. Eden, “B-spline signal 

processing. II. Efficiency design and applications,” IEEE 

Trans. Signal Process., vol. 41, No. 2, pp. 834-848,  

Feb. 1993. 

[12] J.T. Olkkonen and H. Olkkonen, “Fractional time-shift 

B-spline filter,” IEEE Signal Process. Letters, vol. 14, 

No. 10, pp. 688-691, Oct. 2007. 

 

 

 

 


